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ABSTRACT  
We consider a two-dimensional MHD natural convection flow of an incompressible viscous and electrically 

conducting fluid through porous medium past a vertical impermeable flat plate is considered in presence of a 

uniform transverse magnetic field. The governing equations of velocity and temperature fields with appropriate 

boundary conditions are solved by the ordinary differential equations by introducing appropriate coordinate 

transformations. We solve that ordinary differential equations and find the velocity profiles, temperature profile, 

the skin friction and nusselt number. The effects of Grashof number (Gr), Hartmann number (M) and Prandtl 

number (Pr), Darcy parameter (D
-1

) on velocity profiles and temperature profiles are shown graphically.  

Keywords: Natural convection, Grashof number (Gr), Hartmann number (M) and Prandtl number (Pr), Darcy 
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-1
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I. Introduction 
Studies of forced, free and mixed convection 

flow of a viscous incompressible fluid, in the absence 

of magnetic field, along a vertical surface have 

extensively been conducted by Sparrow and Gregg 

[1], Merkin [2], Loyed and Sparrow [3]. Hunt and 

Wilks [4] introduced a group of continuous 

transformations computation for the boundary layer 

equations between the similarity regimes for mixed 

convection flow. In the case of similarity regimes 

Hunt and Wilks [4] recognized ζ (=
2Re

r xG

x
), where 

r xG is the local Grashof number and Re x is the local 

Reynolds number), a governing parameter for the 

flow from a vertical plate. Forced convection exists 

as when ζ goes to zero, which occurs at the leading 

edge, and the free convection limit, can be reached at 

large values of ζ. Perturbation solutions have been 

developed in both the cases, since both the forced 

convection and free convection limits admit 

similarity solution. Empirical patching of two 

perturbation solutions have also been carried out to 

provide a uniformly valid solution by Raju et al [5] 

which covers the whole range of the values of ζ. 

They obtained a finite difference solution applying an 

algebraic transformation 
2

1

1
Z





.Considering 

the free convection as a perturbation quantity has 

developed many solutions. Tingwi et al [6] have also 

studied the effect of forced and free convection along 

a vertical flat plate with uniform heat flux by 

considering that the buoyancy parameter ζ p to be 

5/ 2Re

r xG

x
.The solutions were obtained for the small 

buoyancy parameter taking into the account of the 

perturbation technique.  

Because of its application for MHD natural 

convection flow in the nuclear engineering where 

convection aids the cooling of reactors, the natural 

convection boundary layer flow of an electrically 

conducting fluid up a hot vertical wall in the presence 

of strong magnetic field has been studied by several 

authors, such as Sparrow and Cess [7], Reley [8] and 

Kuiken [9]. Simultaneous occurrence of buoyancy 

and magnetic field forces in the flow of an 

electrically conducting fluid up a hot vertical flat 

plate in the presence of a strong cross magnetic field 

was studied by Sing and Cowling [10] who had 

shown that regardless of strength of applied magnetic 

field there will always be a region in the 

neighborhood of the leading edge of the plate where 

electromagnetic forces are unimportant. Creamer and 

Pai [11] presented a similarity solution for the above 

problem with uniform heat flux by formulating it in 

terms of both a regular and inverse series expansions 

of characterizing coordinate that provided a link 

between the similarity states closed to and far from 

the leading edge. Hossain and Ahmed [13] studied 

the combined effect of the free and forced convection 

with uniform heat flux in the presence of strong 

magnetic field. Hossain et al [14] also investigated 
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the MHD free convection flow along a vertical 

porous flat plate with a power law surface 

temperature in the presence of a variable transverse 

magnetic field employing two different methods 

namely (i) perturbation methods for small and large 

values of the scaled stream-wise transpiration 

velocity variable ξ s (=
0 2V xvU

, where V0 is 

the transpiration velocity) and (ii) the finite 

difference together with the Keller box method [15].  

Wilks [12] recognized a parameter ξ, defined by 
2

0
0

2
( ) ( )

H x
T T

g




 
 


to investigate the 

MHD free convection flow about a semi-infinite 

vertical plate in a strong cross magnetic field. The 

work of that follows reformulates the problem in 

terms of coordinates expansions with respect to a 

non-dimensional characteristic length which is 

fundamental to the problem in its reflection to the 

relative magnitudes of buoyancy and magnetic forces 

at varying locations along the plate. A step by step 

numerical solution has been obtained to supplement 

the series solutions for small and large ξ. Radiation 

and Viscous Dissipation Effects on Unsteady MHD 

Free Convective Mass Transfer Flow Past an Infinite 

Vertical Porous Plate with Hall Current in the 

Presence of Chemical Reaction [16] 

  In the above analysis, the solutions for the 

problem, Wilks [12] used only series solutions 

method. But here the governing equations are 

reduced to ordinary differential equations by 

introducing appropriate coordinate transformations. 

We solve that ordinary differential equations and find 

the velocity profiles, the temperature profile, and the 

skin friction and nusselt number. The effects of 

Grashof number (Gr), Hartmann number (M),Darcy 

Parameter and Prandtl number (Pr) on velocity 

profiles and temperature profiles are shown 

graphically.   

    

II. The governing equations 
The basic equations steady two dimensional 

laminar free convection boundary layer flow of a 

viscous incompressible and electrically conducting 

fluid with viscosity depending on temperature and 

also thermal conductivity depending on temperature 

past a semi-infinite vertical impermeable flat plate in 

the presence 
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With the boundary conditions 

0, 0

0, (4)

u v T T at y

u T T as y





   

  

 

Here u, v is the velocity components associated with the direction of increase of coordinates x  and y 

measured along and normal to the vertical plate. T  is the temperature of the fluid in the boundary layer, g is the 

acceleration due to gravity, β is the coefficient of thermal expansion, κ   is the thermal conductivity, ρ∞   is the 

density of the fluid, cp  is the specific heat at constant pressure and T∞   is the temperature of the ambient fluid 

and ν the kinematics viscosity of the fluid. From the continuity equation (1) we consider the velocity normal t 

the plate is of the form v = -V0. 

 

Now we introduce the following transformations to the equation (2) and (3) 

 
2 2 2

10 0 0

2 2

0 0 0 0 0

( )
, , , , , , (5)

p

r r

cV y u T T gh T T v H v h
Y U G P M D

v U T T U V k V k
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


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 

 
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
 

And we get the following equations 
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With  the boundary conditions 

0, 1 0

0, 0 (8)

U at Y

U as Y





  

  
 

 

III. Result 
The equations (6) and (7) with the boundary condition (8) are simply ordinary differential equation. We can 

find the solution of that equation (6) and (7) as the following form equation (9) and (10) respectively 

   

11 1 4( )
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We also find the skin friction and the rate of heat transfer as follows 

1

2 1
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IV. Discussion 
In this section we discuss the results obtained 

from the solution of the equations governing the 

MHD free convection flow of a viscous 

incompressible and electrically conducting fluid with 

uniform viscosity and uniform thermal conductivity, 

in the presence of uniform transverse magnetic field 

along an impermeable vertical flat plate. For the 

solutions of the governing non-similar equations, a 

group of transformations is used to get a group of 

ordinary differential equations. Here we consider the 

low Prandl number (Pr) liquid metals. We have 

pursued solutions for Pr equals 0.25 for ammonia, 

0.75 for air, 0.50 for lithium for sodium at 6490c.  

We have calculated the skin friction and the rate 

of heat transfer in the equation no. (13) and (14). For 

increasing values of Prandtl number, the local skin 

friction decreases monotonically .The skin friction 

increase at the decreasing values of the magnetic 

field parameter, M and increasing values of Grashof 

number Gr. 

The velocity profiles for Gr=1, 5, 10  M=2, 4, 8 

Pr=0.25, 0.50, 0.75 are depcited in the figures from 

Fig.2 to Fig.5. In the Fig.2 (A) and Fig.2 (B), the 

velocity profiles for Pr=0.25 and M=2 with Gr=1, 5, 

10 are plotted. Here we see that the velocity profile 

increases with the increasing values of Grashof 

number (Gr). These effects are significant near the 

surface of the plate. In the downstream region these 

profiles go to a limiting point. In the Fig.3 (A) and 

Fig.3 (B), the velocity profiles for Pr=0.25 and M=2, 

4, 8 with Gr= 5, -5 are plotted. These velocity profile 

increases with the increasing values of magnetic field 

parameter (M). We see that for Y=1 these effect is 

significant and for large values of Y these profiles go 

to a limiting point.  
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The velocity profiles for Gr=5 and M=5 are 

shown in the Fig.4(A) and 4(B) for Pr equals 0.25 for 

ammonia, 0.75 for air, 0.50 for lithium for sodium at 

6490c. Again the temperature profiles for for Gr=5 

and M=2 are shown in the Fig.5 for Pr = 0.25, 0.50, 

0.75 Here for increasing values of Pr, the velocity 

profiles as well as temperature profiles decreases. In 

the upstream regime the effect of Pr on the velocity 

profiles is not remarkable. The velocity profile and 

temperature profiles that we obtained is similar to 

that of Wilks. The effects of different Pr are 

significant near the surface of the plate.   

 

V. Conclusion 
In this paper, the problem of magneto 

hydrodynamic free convection flow along a vertical 

flat plate is investigated. The local non-similarity 

equations governing the flow for the case of uniform 

viscosity and thermal conductivity are developed. 

The numerical computations were carried out only 

for the case of assisting flow for the fluids having 

low Prandtl number appropriate for liquid metals (Pr 

0.92 for ammonia, 0.72 for air, 0.05 for lithium and 

0.004 for sodium at 6490c).  

  The results thus we obtained for skin friction 

and the rate of heat transfer coefficient are presented 

in tabular form in the case of different properties of 

the liquid metals. The velocity profiles and the 

thermal conductivity profiles are given graphically in 

the in the case of constant viscosity. Finally, 

followings may be concluded from the throughout 

present investigations:  

1.  For increasing values of Prandtl number, the 

local skin friction decreases monotonically.  

2.  The skin friction increase at the decreasing 

values of the magnetic field parameter, M and 

increasing values of Grashof number Gr.  

 3.  Profiles for the velocity as well as the thermal 

conductivity decrease due to the increasing 

values of the Prandtl number, Pr.  
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